MAX materials and MXene materials are new two-dimensional materials that have attracted much attention lately, with excellent physical, chemical, and mechanical properties, and also have shown broad application prospects in numerous fields. This is a comprehensive overview of the properties, applications, and development trends of MAX and MXene materials.
Precisely What is MAX material?
MAX phase material is really a layered carbon nitride inorganic non-metallic material composed of M, A, X elements around the periodic table, collectively referred to as “MAX phase”. M represents transition metal elements, like titanium, zirconium, hafnium, etc., A represents the key group elements, including aluminum, silicon, germanium, etc., X represents carbon or nitrogen. MAX-phase materials, each atomic layer consists of M, A, X, the 3 aspects of the alternating composition arrangement, with hexagonal lattice structure. Because of the electrical conductivity of metal and high strength, high-temperature resistance and corrosion resistance of structural ceramics, they are popular in high-temperature structural materials, high-temperature antioxidant coatings, high-temperature lubricants, electromagnetic shielding along with other fields.
Properties of MAX material
MAX material is a new form of layered carbon nitride inorganic non-metallic material using the conductive and thermal conductive qualities of metal, comprising three elements using the molecular formula of Mn 1AXn (n=1, 2 or 3), where M refers back to the transition metal, A refers to the main-group elements, and X refers to the components of C or N. The MXene material is really a graphene-like structure obtained from the MAX phase treatment with two-dimensional transition metal carbides, nitrides, or carbon-nitrides. MAX Phases and MXenes are novel two-dimensional nanomaterials composed of carbon, nitrogen, oxygen, and halogens.
Uses of MAX materials
(1) Structural materials: the excellent physical properties of MAX materials get them to have an array of applications in structural materials. For instance, Ti3SiC2 is a very common MAX material with good high-temperature performance and oxidation resistance, which could be used to manufacture high-temperature furnaces and aero-engine components.
(2) Functional materials: Besides structural materials, MAX materials can also be utilized in functional materials. As an example, some MAX materials have good electromagnetic shielding properties and conductivity and could be used to manufacture electromagnetic shielding covers, coatings, etc. Additionally, some MAX materials also provide better photocatalytic properties, and electrochemical properties may be used in photocatalytic and electrochemical reactions.
(3) Energy materials: some MAX materials have better ionic conductivity and electrochemical properties, which can be utilized in energy materials. For example, K4(MP4)(P4) is one of the MAX materials rich in ionic conductivity and electrochemical activity, which bring a raw material to produce solid-state electrolyte materials and electrochemical energy storage devices.
What are MXene materials?
MXene materials certainly are a new type of two-dimensional nanomaterials obtained by MAX phase treatment, similar to the structure of graphene. The surface of MXene materials can connect with more functional atoms and molecules, along with a high specific surface, good chemical stability, biocompatibility, and tunable physical properties, etc, characterize them. The preparation methods of MXene materials usually include the etching therapy for the MAX phase and also the self-templating method, etc. By adjusting the chemical composition and structure of MXene materials, the tuning of physical properties including electrical conductivity, magnetism and optics may be realized.
Properties of MXene materials
MXene materials certainly are a new type of two-dimensional transition metal carbide or nitride materials consisting of metal and carbon or nitrogen elements. These materials have excellent physical properties, like high electrical conductivity, high elasticity, good oxidation, and corrosion resistance, etc., along with good chemical stability and the opportunity to maintain high strength and stability at high temperatures.
Applications of MXene materials
(1) Energy storage and conversion: MXene materials have excellent electrochemical properties and ionic conductivity and therefore are popular in energy storage and conversion. For instance, MXene materials can be used as electrode materials in supercapacitors and lithium-ion batteries, improving electrode energy density and charge/discharge speed. In addition, MXene materials may also be used as catalysts in fuel cells to enhance the activity and stability of the catalyst.
(2) Electromagnetic protection: MXene materials have good electromagnetic shielding performance, and conductivity can be used in electromagnetic protection. For example, MXene materials can be used as electromagnetic shielding coatings, electromagnetic shielding cloth, and other applications in electronic products and personal protection, enhancing the effectiveness and stability of electromagnetic protection.
(3) Sensing and detection: MXene materials have good sensitivity and responsiveness and can be used in sensing and detection. As an example, MXene materials can be used gas sensors in environmental monitoring, which can realize high sensitivity and high selectivity detection of gases. Furthermore, MXene materials may also be used as biosensors in medical diagnostics along with other fields.
Development trend of MAX and MXene Materials
As new 2D materials, MAX and MXene materials have excellent performance and application prospects. Down the road, with all the continuous progress of technology and science and the increasing demand for applications, the preparation technology, performance optimization, and application regions of MAX and MXene materials will be further expanded and improved. The following aspects could become the focus of future research and development direction:
Preparation technology: MAX and MXene materials are mostly prepared by chemical vapor deposition, physical vapor deposition and liquid phase synthesis. Down the road, new preparation technologies and methods can be further explored to understand a far more efficient, energy-saving and environmentally friendly preparation process.
Optimization of performance: The performance of MAX and MXene materials has already been high, but there is still room for further optimization. In the future, the composition, structure, surface treatment as well as other elements of the content could be studied and improved thorough to boost the material’s performance and stability.
Application areas: MAX materials and MXene materials have been widely used in many fields, but you can still find many potential application areas to become explored. Later on, they may be further expanded, like in artificial intelligence, biomedicine, environmental protection as well as other fields.
To conclude, MAX materials and MXene materials, as new two-dimensional materials with excellent physical, chemical and mechanical properties, show a broad application prospect in lots of fields. With all the continuous progress of technology and science and also the continuous improvement of application demand, the preparation technology, performance optimization and application parts of MAX and MXene materials is going to be further expanded and improved.
MAX and MXene Materials Supplier
TRUNNANO Luoyang Trunnano Tech Co., Ltd supply high purity and super fine MAX phase powders, such as Ti3AlC2, Ti2AlC, Ti3SiC2, V2AlC, Ti2SnC, Mo3AlC2, Nb2AlC, V4AlC3, Mo2Ga2C, Cr2AlC, Ta2AlC, Ta4AlC3, Ti3AlCN, Ti2AlN, Ti4AlN3, Nb4AlC3, etc. Send us an email or click on the needed products to send an inquiry.